
CSE331 Introduction to Algorithm
Lecture 6: Closest Pair of Points

Antoine Vigneron
antoine@unist.ac.kr

Ulsan National Institute of Science and Technology

July 11, 2017

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 1 / 26

1 Introduction

2 One-dimensional version

3 Brute force approach

4 Divide and conquer approach

5 Handling the strip S

6 Implementation and Analysis

7 Conclusion

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 2 / 26

Introduction

Reference: Section 33.4 of the textbook Introduction to Algorithms
by Cormen, Leiserson, Rivest and Stein.

I I modified the algorithm slightly.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 3 / 26

https://mitpress.mit.edu/books/introduction-algorithms

Problem Statement

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 4 / 26

Problem Statement

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 5 / 26

Problem Statement

Problem (Closest Pair)

Given a set P of n points in the plane, the closest pair problem is to find
two points p∗, q∗ ∈ P such that their distance δ∗ = d(p∗, q∗) is minimum.

It can also be stated as follows:

INPUT: A set of points {p1, . . . , pn} in the plane

OUTPUT: A pair (pi , pj) such that i < j and d(pi , pj) 6 d(pk , p`) for
every k 6= `

Applications: Air traffic control (in order to detect potential
collisions), . . .

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 6 / 26

One-Dimensional Version

p2 p4p1 p3 p5

p2 p4p1 p3 p5

Property

The two closest points are adjacent.

So we can just sort P, and scan from left to right.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 7 / 26

One-Dimensional Version

Pseudocode

1: procedure 1DClosestPair(P = {p1, . . . , pn})
2: Q[1 . . . n]← P in sorted order
3: q ← Q[1], r ← Q[2]
4: for i ← 2, n − 1 do
5: if d(Q[i],Q[i + 1]) < d(q, r) then
6: q ← Q[i], r ← Q[i + 1]

7: return (q, r)

Analysis: Using Merge Sort, it takes
O(n) + Θ(n log n) = Θ(n log n) time.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 8 / 26

Brute Force Approach

Pseudocode

1: procedure SlowClosestPair(P = {p1, . . . , pn})
2: a← 1, b ← 2
3: for i ← 1, n − 1 do
4: for j ← i + 1, n do
5: if d(pi , pj) < d(pa, pb) then
6: a← i , b ← j

7: return (pa, pb)

Running time: Θ(n2)

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 9 / 26

Brute Force Approach

Line 5 implementation: We can use the formula

d(pi , pj) =
√

(xi − xj)2 + (yi − yj)2

where (xi , yi) denote the coordinates of pi .

Or compare the squares of the distances

(xi − xj)
2 + (yi − yj)

2 < (xa − xb)2 + (ya − yb)2

which does not require the square root function.

We can also store the distance d(pa, pb) (or its square) and update it
each time a, b is updated, so that we don’t need to recompute it each
time the test from Line 6 is executed.

In any case the running time remains Θ(n2).

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 10 / 26

Divide and Conquer Approach

Figure: Input point set P.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 11 / 26

Divide and Conquer Approach

`

|PL| = bn2 c |PR| = dn2 e

Figure: Split P evenly using a vertical line `.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 12 / 26

Divide and Conquer Approach

`

|PL| = bn2 c |PR| = dn2 e

δL

Figure: Compute recursively the closest pair in PL.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 13 / 26

Divide and Conquer Approach

`

|PL| = bn2 c |PR| = dn2 e

δL

δR

Figure: Compute recursively the closest pair in PR .

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 14 / 26

Divide and Conquer Approach

`

|PL| = bn2 c |PR| = dn2 e

δL

δR

δ δδ = min(δL, δR)

δM

S

Figure: Compute the closest pair in the vertical strip S around `.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 15 / 26

Divide and Conquer Approach

Finding a closest pair of points

If n 6 4, solve the problem by brute force. (Base case)

Otherwise:
1 Find a vertical line ` such that splits P evenly into two sets PL and PR

of size at most dn/2e each.
2 Compute recursively the closest pair distance δL in PL.
3 Compute recursively the closest pair distance δR in PR .
4 Let δ = min(δL, δR), and let δM be the closest pair distance in the strip

S of width 2δ centered at `. If δM < δ, compute δM and return the
corresponding pair.

5 Otherwise, the closest pair distance in P is δ∗ = δ. Return the
corresponding pair.

Idea: Step 4 deals with a narrow vertical strip, so it is almost like the
1D case, and thus we may be able to solve it quickly.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 16 / 26

Proof of Correctness
`

p∗ q∗

Case 1

`

p∗ q∗

Case 2

`

p∗
q∗

S

Case 3

Let p∗, q∗ be a closest pair and δ∗ = d(p∗, q∗).

Then we are in one of the three cases below:
1 p∗ ∈ PL and q∗ ∈ PL. Then δ∗ = δL and δ∗ 6 δR . Then our algorithm

returns δ = min(δL, δR) = δ∗.
2 p∗ ∈ PR and q∗ ∈ PR . Similar to previous case.
3 p∗ ∈ PL and q∗ ∈ PR , or p∗ ∈ PR and q∗ ∈ PL. Then the segment

p∗q∗ intersects `. We know that δ∗ 6 δL and δ∗ 6 δR , so δ∗ 6 δ. As
this segment has length δ∗ 6 δ, it follows that p∗ and q∗ lie in S , and
thus δ∗ = δM . In this case our algorithm either returns δM , or it returns
δ when δM = δ, which is the correct answer.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 17 / 26

Handling the Strip S

Lemma

Within any 2δ × δ box in the strip S, there are at most 8 points.

`S

2δ

δ Proof.

Any two points in PL are at distance at least
δL > δ.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 18 / 26

Handling Strip S

Lemma

Within any 2δ × δ box in the strip S, there are at most 8 points.

`S

2δ

δ

Proof.

Any two points in PL are at distance at least
δL > δ. So there are at most 4 points of PL in the
green square. Similarly, there are 6 4 points of PR

in the blue square.

Worst case: the two points in the middle appear
twice, once in PL and once in PR .

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 19 / 26

Handling the strip S

qi

qi+2

qi+3

qi+4
qi+5

qi+6

qi+7

qi+8

δ

qi−1

qi−2

qi+1

Let M denote P ∩ S .

We assume that M = (q1, . . . , qm) is sorted
by y coordinates.

The lemma above suggests the following
approach:

I For each qi , compute the 7 distances
d(qi , qi+1), . . . , d(qi , qi+7).

I Return the closest pair (qa, qb) among
them.

It runs in Θ(m) time, since we only consider
7m pairs.

Proof of correctness: By the lemma, if
j > i + 7, then mi and mj do not lie in the
same box, and hence their distance is more
than δ.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 20 / 26

Handling the strip S

Pseudocode (assuming that M is sorted by y -coordinate)

1: procedure HandleStrip(M = (q1, . . . , qm))
2: if m 6 1 then
3: return NotFound
4: a← 1, b ← 2
5: for i ← 1,m − 1 do
6: for j ← i + 1, i + 7 do
7: if j 6 m and d(qi , qj) < d(qa, qb) then
8: a← i , b ← j

9: return (qa, qb)

Remark: This is very similar to the 1D algorithm.

Difference: We check 7 points ahead instead of just 1.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 21 / 26

First Version of the Algorithm

Step 1 can be done as follows:
I Sort P by x-coordinate into an array X [1 . . . n].
I Let r = bn/2c.
I The arrays XL = X [1 . . . r] and XR = X [r + 1 . . . n] record PL and Pr .

So it takes Θ(n log n) time.

Step 4 also takes Θ(n log n) time if we include the time needed to
sort the points by y -coordinates.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 22 / 26

Analysis

So the running time T (n) satisfies the relation:

T (n) = T (bn/2c) + T (dn/2e) + Θ(n log n).

The master method fails here, neither of the three cases apply.

It can be shown that T (n) = Θ(n log2 n). (See exercise set 3.)

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 23 / 26

Faster Implementation

The Θ(n log n) term in the previous slide comes from:
I Sorting P by x-coordinate.
I Sorting M by y -coordinate.

We can replace it with Θ(n) if we presort P into two arrays X [1 . . . n]
and Y [1 . . . n], sorted by x and y -coordinates respectively.

Then at each recursive call, we can split these arrays into sorted
arrays XL[], XR [], YL[], YR [] in Θ(n) time.

Implementation details are left as an exercise (see Exercise set 3).

So the recurrence relation becomes

T (n) = T (bn/2c) + T (dn/2e) + Θ(n).

It solves to T (n) = Θ(n log n).

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 24 / 26

Conclusion

Theorem

The closest pair problem can be solved in O(n log n) time.

Under a fairly general model of computation, one can prove that this
is optimal: Any algorithm takes Ω(n log n) in the worst case, even in
one dimension. (Not covered in CSE331.)

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 25 / 26

Conclusion

This approach applies to several 2D geometric problems: Divide into
two parts of size n/2 using a vertical line, and handle the objects that
cross the line using a 1D algorithm.

It also applies in dimension d > 3 or higher: use a vertical plane
(hyperplane), and near the separating plane, use the d − 1
dimensional algorithm.

So this approach combines divide and conquer, and recursion on the
dimension of the problem.

The closest pair problem is a Computational Geometry problem. This
is my research field.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 26 / 26

	Introduction
	One-dimensional version
	Brute force approach
	Divide and conquer approach
	Handling the strip S
	Implementation and Analysis
	Conclusion

