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Introduction

Reference: Section 33.4 of the textbook Introduction to Algorithms
by Cormen, Leiserson, Rivest and Stein.

I I modified the algorithm slightly.
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https://mitpress.mit.edu/books/introduction-algorithms
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Problem Statement

Problem (Closest Pair)

Given a set P of n points in the plane, the closest pair problem is to find
two points p∗, q∗ ∈ P such that their distance δ∗ = d(p∗, q∗) is minimum.

It can also be stated as follows:

INPUT: A set of points {p1, . . . , pn} in the plane

OUTPUT: A pair (pi , pj) such that i < j and d(pi , pj) 6 d(pk , p`) for
every k 6= `

Applications: Air traffic control (in order to detect potential
collisions), . . .
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One-Dimensional Version

p2 p4p1 p3 p5

p2 p4p1 p3 p5

Property

The two closest points are adjacent.

So we can just sort P, and scan from left to right.
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One-Dimensional Version

Pseudocode

1: procedure 1DClosestPair(P = {p1, . . . , pn})
2: Q[1 . . . n]← P in sorted order
3: q ← Q[1], r ← Q[2]
4: for i ← 2, n − 1 do
5: if d(Q[i ],Q[i + 1]) < d(q, r) then
6: q ← Q[i ], r ← Q[i + 1]

7: return (q, r)

Analysis: Using Merge Sort, it takes
O(n) + Θ(n log n) = Θ(n log n) time.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 8 / 26



Brute Force Approach

Pseudocode

1: procedure SlowClosestPair(P = {p1, . . . , pn})
2: a← 1, b ← 2
3: for i ← 1, n − 1 do
4: for j ← i + 1, n do
5: if d(pi , pj) < d(pa, pb) then
6: a← i , b ← j

7: return (pa, pb)

Running time: Θ(n2)
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Brute Force Approach

Line 5 implementation: We can use the formula

d(pi , pj) =
√

(xi − xj)2 + (yi − yj)2

where (xi , yi ) denote the coordinates of pi .

Or compare the squares of the distances

(xi − xj)
2 + (yi − yj)

2 < (xa − xb)2 + (ya − yb)2

which does not require the square root function.

We can also store the distance d(pa, pb) (or its square) and update it
each time a, b is updated, so that we don’t need to recompute it each
time the test from Line 6 is executed.

In any case the running time remains Θ(n2).
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Divide and Conquer Approach

Figure: Input point set P.
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Divide and Conquer Approach

`

|PL| = bn2 c |PR| = dn2 e

Figure: Split P evenly using a vertical line `.
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Divide and Conquer Approach

`

|PL| = bn2 c |PR| = dn2 e

δL

Figure: Compute recursively the closest pair in PL.
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Divide and Conquer Approach

`

|PL| = bn2 c |PR| = dn2 e

δL

δR

Figure: Compute recursively the closest pair in PR .
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Divide and Conquer Approach

`

|PL| = bn2 c |PR| = dn2 e

δL

δR

δ δδ = min(δL, δR)

δM

S

Figure: Compute the closest pair in the vertical strip S around `.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 15 / 26



Divide and Conquer Approach

Finding a closest pair of points

If n 6 4, solve the problem by brute force. (Base case)

Otherwise:
1 Find a vertical line ` such that splits P evenly into two sets PL and PR

of size at most dn/2e each.
2 Compute recursively the closest pair distance δL in PL.
3 Compute recursively the closest pair distance δR in PR .
4 Let δ = min(δL, δR), and let δM be the closest pair distance in the strip

S of width 2δ centered at `. If δM < δ, compute δM and return the
corresponding pair.

5 Otherwise, the closest pair distance in P is δ∗ = δ. Return the
corresponding pair.

Idea: Step 4 deals with a narrow vertical strip, so it is almost like the
1D case, and thus we may be able to solve it quickly.
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Proof of Correctness
`

p∗ q∗

Case 1

`

p∗ q∗

Case 2

`

p∗
q∗

S

Case 3

Let p∗, q∗ be a closest pair and δ∗ = d(p∗, q∗).

Then we are in one of the three cases below:
1 p∗ ∈ PL and q∗ ∈ PL. Then δ∗ = δL and δ∗ 6 δR . Then our algorithm

returns δ = min(δL, δR) = δ∗.
2 p∗ ∈ PR and q∗ ∈ PR . Similar to previous case.
3 p∗ ∈ PL and q∗ ∈ PR , or p∗ ∈ PR and q∗ ∈ PL. Then the segment

p∗q∗ intersects `. We know that δ∗ 6 δL and δ∗ 6 δR , so δ∗ 6 δ. As
this segment has length δ∗ 6 δ, it follows that p∗ and q∗ lie in S , and
thus δ∗ = δM . In this case our algorithm either returns δM , or it returns
δ when δM = δ, which is the correct answer.
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Handling the Strip S

Lemma

Within any 2δ × δ box in the strip S, there are at most 8 points.

`S

2δ

δ Proof.

Any two points in PL are at distance at least
δL > δ.
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Handling Strip S

Lemma

Within any 2δ × δ box in the strip S, there are at most 8 points.

`S

2δ

δ

Proof.

Any two points in PL are at distance at least
δL > δ. So there are at most 4 points of PL in the
green square. Similarly, there are 6 4 points of PR

in the blue square.

Worst case: the two points in the middle appear
twice, once in PL and once in PR .

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 19 / 26



Handling the strip S

qi

qi+2

qi+3

qi+4
qi+5

qi+6

qi+7

qi+8

δ

qi−1

qi−2

qi+1

Let M denote P ∩ S .

We assume that M = (q1, . . . , qm) is sorted
by y coordinates.

The lemma above suggests the following
approach:

I For each qi , compute the 7 distances
d(qi , qi+1), . . . , d(qi , qi+7).

I Return the closest pair (qa, qb) among
them.

It runs in Θ(m) time, since we only consider
7m pairs.

Proof of correctness: By the lemma, if
j > i + 7, then mi and mj do not lie in the
same box, and hence their distance is more
than δ.
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Handling the strip S

Pseudocode (assuming that M is sorted by y -coordinate)

1: procedure HandleStrip(M = (q1, . . . , qm))
2: if m 6 1 then
3: return NotFound
4: a← 1, b ← 2
5: for i ← 1,m − 1 do
6: for j ← i + 1, i + 7 do
7: if j 6 m and d(qi , qj) < d(qa, qb) then
8: a← i , b ← j

9: return (qa, qb)

Remark: This is very similar to the 1D algorithm.

Difference: We check 7 points ahead instead of just 1.
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First Version of the Algorithm

Step 1 can be done as follows:
I Sort P by x-coordinate into an array X [1 . . . n].
I Let r = bn/2c.
I The arrays XL = X [1 . . . r ] and XR = X [r + 1 . . . n] record PL and Pr .

So it takes Θ(n log n) time.

Step 4 also takes Θ(n log n) time if we include the time needed to
sort the points by y -coordinates.
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Analysis

So the running time T (n) satisfies the relation:

T (n) = T (bn/2c) + T (dn/2e) + Θ(n log n).

The master method fails here, neither of the three cases apply.

It can be shown that T (n) = Θ(n log2 n). (See exercise set 3.)
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Faster Implementation

The Θ(n log n) term in the previous slide comes from:
I Sorting P by x-coordinate.
I Sorting M by y -coordinate.

We can replace it with Θ(n) if we presort P into two arrays X [1 . . . n]
and Y [1 . . . n], sorted by x and y -coordinates respectively.

Then at each recursive call, we can split these arrays into sorted
arrays XL[], XR [], YL[], YR [] in Θ(n) time.

Implementation details are left as an exercise (see Exercise set 3).

So the recurrence relation becomes

T (n) = T (bn/2c) + T (dn/2e) + Θ(n).

It solves to T (n) = Θ(n log n).
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Conclusion

Theorem

The closest pair problem can be solved in O(n log n) time.

Under a fairly general model of computation, one can prove that this
is optimal: Any algorithm takes Ω(n log n) in the worst case, even in
one dimension. (Not covered in CSE331.)
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Conclusion

This approach applies to several 2D geometric problems: Divide into
two parts of size n/2 using a vertical line, and handle the objects that
cross the line using a 1D algorithm.

It also applies in dimension d > 3 or higher: use a vertical plane
(hyperplane), and near the separating plane, use the d − 1
dimensional algorithm.

So this approach combines divide and conquer, and recursion on the
dimension of the problem.

The closest pair problem is a Computational Geometry problem. This
is my research field.
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