CSE331 Introduction to Algorithm
Lecture 6: Closest Pair of Points

Antoine Vigneron
antoine@unist.ac.kr

Ulsan National Institute of Science and Technology

July 11, 2017

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 1/26

@ Introduction

© One-dimensional version

© Brute force approach

@ Divide and conquer approach
© Handling the strip S

@ Implementation and Analysis

@ Conclusion

Antoine Vigneron (UNIST)

CSE331 Lecture 6

Introduction

@ Reference: Section 33.4 of the textbook Introduction to Algorithms
by Cormen, Leiserson, Rivest and Stein.

> | modified the algorithm slightly.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 3 /26

https://mitpress.mit.edu/books/introduction-algorithms

Problem Statement

Antoine Vigneron (UNIST) CSE331 Lecture 6

Problem Statement

Antoine Vigneron (UNIST) CSE331 Lecture 6

Problem Statement

Problem (Closest Pair)

Given a set P of n points in the plane, the closest pair problem is to find
two points p*,q* € P such that their distance 0* = d(p*, q*) is minimum.

It can also be stated as follows:
@ INPUT: A set of points {pi,...,pn} in the plane

e OUTPUT: A pair (pi, pj) such that i < j and d(pj, pj) < d(pk, pe) for
every k # /¢

o Applications: Air traffic control (in order to detect potential
collisions), . ..

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 6 /26

One-Dimensional Version

P2 P1 P3

P4

D5

P2 P1 P3

P4

b5

Property
The two closest points are adjacent.

@ So we can just sort P, and scan from left to right.

Antoine Vigneron (UNIST) CSE331 Lecture 6

One-Dimensional Version

Pseudocode

1. procedure 1DCLOSESTPAIR(P = {p1,...,Pn})

2: Q[1...n] < P in sorted order

g+ Q[1], r + Q[2]
for i< 2,n—1do

if d(Q[i], Q[i +1]) < d(q,r) then
g+ Q[i], r+ Q[i +1]
return (q,r)

SO OT e

@ Analysis: Using MERGE SORT, it takes
O(n) + ©(nlog n) = ©(nlog n) time.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 8 /26

Brute Force Approach

Pseudocode
1. procedure SLOWCLOSESTPAIR(P = {p1,...,pn})
2: a<1 b+ 2
3 for i< 1,n—1do
4: for j< i+1,ndo
5: if d(p,',pj) < d(pa,pb) then
6: a< i, b+
7 return (p,, pp))

@ Running time: ©(n?)

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 9 /26

Brute Force Approach

@ Line 5 implementation: We can use the formula

d(pispy) = /(i =) + (v = 332

where (x;, y;) denote the coordinates of p;.

@ Or compare the squares of the distances

(xi — %)%+ (i —)2 < (xa — x6)* + (Va — ¥b)?

which does not require the square root function.

@ We can also store the distance d(p,, pp) (or its square) and update it
each time a, b is updated, so that we don’t need to recompute it each
time the test from Line 6 is executed.

@ In any case the running time remains ©(n?).

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 10 / 26

Divide and Conquer Approach

Figure: Input point set P.

Antoine Vigneron (UNIST) CSE331 Lecture 6

Divide and Conquer Approach

1P| = 5] ’ |Pr| = [5]

Figure: Split P evenly using a vertical line /.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 12 /26

Divide and Conquer Approach

LN -

1P| = 5] ’ |Pr| = [5]

Figure: Compute recursively the closest pair in P;.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 13 /26

Divide and Conquer Approach

LN -

1P| = 5] ’ |Pr| = [5]

Figure: Compute recursively the closest pair in Prg.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 14 / 26

Divide and Conquer Approach

. S |4

0= min(éL,éR) ‘_5"_’ o

LN -

7

1P| = 3] |Pr| = [5]

Figure: Compute the closest pair in the vertical strip S around £.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 15 / 26

Divide and Conquer Approach

Finding a closest pair of points

e If n < 4, solve the problem by brute force. (Base case)
@ Otherwise:

© Find a vertical line £ such that splits P evenly into two sets P; and Pgr
of size at most [n/2] each.

@ Compute recursively the closest pair distance §; in Py.

© Compute recursively the closest pair distance dg in Pg.

@ Let § = min(d;,dg), and let dpy be the closest pair distance in the strip
S of width 20 centered at /. If §p; < §, compute oy and return the
corresponding pair.

© Otherwise, the closest pair distance in P is §* = §. Return the
corresponding pair.

@ Idea: Step 4 deals with a narrow vertical strip, so it is almost like the
1D case, and thus we may be able to solve it quickly.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 16 / 26

Proof of Correctness
. ; Y, ;

* . . S .
p.*/‘q * o ° . . : .
PiLq P q*
Case 1 Case 2 Case 3

o Let p*,g* be a closest pair and §* = d(p*, ¢*).
@ Then we are in one of the three cases below:
Q p*€ PLand g* € P.. Then 6* = §; and 0* < dg. Then our algorithm
returns 6 = min(d,,0g) = 0*.
@ p* € Pr and g* € Pgr. Similar to previous case.
© p* € P.and g* € Pg, or p* € Pr and g* € P.. Then the segment
p*q* intersects £. We know that §* < §; and §* < g, so 6* < 4. As
this segment has length §* < 4, it follows that p* and g* lie in S, and
thus 6* = dp. In this case our algorithm either returns dy, or it returns
6 when dp = 6, which is the correct answer.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 17 / 26

Handling the Strip S
Lemma

Within any 26 x § box in the strip S, there are at most 8 points.

S |/
(]
[]
(]
5I * Proof.
C Any two points in P, are at distance at least
o o = 9. O
D —
20

Antoine Vigneron (UNIST) CSE331 Lecture 6

July 11, 2017 18 / 26

Handling Strip S

Lemma
Within any 26 x § box in the strip S, there are at most 8 points. J
S l
. Proof.
* Any two points in P, are at distance at least
0p = 6. So there are at most 4 points of P; in the
D green square. Similarly, there are < 4 points of Pg
) ¢ in the blue square. O
[J
. Worst case: the two points in the middle appear
A twice, once in P, and once in Pg.
[)
[)
-
20

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 19 / 26

Handling the strip S

i+ o Let M denote PN S.
it e We assume that M = (q1,...,qm) is sorted
Qi by y coordinates.
' @ The lemma above suggests the following
Givy | 9+3 approach:
> For each g;, compute the 7 distances
.qi+3 d(q/a qi+1)7 ey d(qi7 qi+7)-
> Return the closest pair (g., g») among
Gito) them.
5¢ G : i+ @ It runs in ©(m) time, since we only consider
* 7m pairs.

@ Proof of correctness: By the lemma, if

I j > i+7, then m;j and m; do not lie in the
same box, and hence their distance is more
;i —2
. than ¢.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 20 / 26

Handling the strip S

Pseudocode (assuming that M is sorted by y-coordinate)

1. procedure HANDLESTRIP(M = (q1,...,qm))
2 if m <1 then

3 return NOTFOUND

4: a<1 b+ 2

5: for i+ 1,m—1do

6 for j< i+1,i+7do

7 if j < mand d(q;, q;) < d(qa, qp) then
8 a<+ i, b+

9

return (q,, qp)

@ Remark: This is very similar to the 1D algorithm.

o Difference: We check 7 points ahead instead of just 1.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 21 /26

First Version of the Algorithm

@ Step 1 can be done as follows:

» Sort P by x-coordinate into an array X[1...n].
» Let r = [n/2].
» The arrays X; = X[1...r] and Xg = X[r+1...n] record P, and P,.

@ So it takes ©(nlog n) time.

@ Step 4 also takes ©(nlog n) time if we include the time needed to
sort the points by y-coordinates.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 22 /26

Analysis

@ So the running time T(n) satisfies the relation:

T(n)=T(|n/2])+ T([n/2]) + ©(nlog n).

@ The master method fails here, neither of the three cases apply.
@ It can be shown that T(n) = ©(nlog? n). (See exercise set 3.)

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017

23 /26

Faster Implementation

@ The ©(nlog n) term in the previous slide comes from:

» Sorting P by x-coordinate.
» Sorting M by y-coordinate.

@ We can replace it with ©(n) if we presort P into two arrays X[1...n]
and Y[1...n], sorted by x and y-coordinates respectively.

@ Then at each recursive call, we can split these arrays into sorted
arrays X.[], Xgr[], Yi[l. YrI[] in ©(n) time.

o Implementation details are left as an exercise (see Exercise set 3).

@ So the recurrence relation becomes

T(n) = T([n/2]) + T([n/2]) + ©(n).

e It solves to T(n) = ©(nlog n).

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 24 / 26

Conclusion

The closest pair problem can be solved in O(nlog n) time.

Theorem J

@ Under a fairly general model of computation, one can prove that this
is optimal: Any algorithm takes Q(nlog n) in the worst case, even in
one dimension. (Not covered in CSE331.)

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 25/ 26

Conclusion

@ This approach applies to several 2D geometric problems: Divide into
two parts of size n/2 using a vertical line, and handle the objects that
cross the line using a 1D algorithm.

o It also applies in dimension d > 3 or higher: use a vertical plane
(hyperplane), and near the separating plane, use the d — 1
dimensional algorithm.

@ So this approach combines divide and conquer, and recursion on the
dimension of the problem.

@ The closest pair problem is a Computational Geometry problem. This
is my research field.

Antoine Vigneron (UNIST) CSE331 Lecture 6 July 11, 2017 26 / 26

	Introduction
	One-dimensional version
	Brute force approach
	Divide and conquer approach
	Handling the strip S
	Implementation and Analysis
	Conclusion

