
CSE331 Introduction to Algorithm
Lecture 4: Solving Recurrences

Antoine Vigneron
antoine@unist.ac.kr

Ulsan National Institute of Science and Technology

July 11, 2017

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 1 / 33

1 Introduction

2 The substitution method

3 The recursion tree method

4 The master method

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 2 / 33

Introduction

Reference: Sections 4.3, 4.4 and 4.5 of the textbook Introduction to
Algorithms by Cormen, Leiserson, Rivest and Stein.

In Lecture 3, the running times were given by recurrence relations.

Merge Sort: T (n) =T (dn/2e) + T (bn/2c) + Θ(n) (1)

Binary Search: T (n) =T (bn/2c) + Θ(1) (2)

It is often going to be the case.
I Many algorithms are recursive.
I In particular, divide and conquer algorithms.

In this Lecture, we will see how to solves some recurrence relations
that often arise when analyzing algorithms.

The function T (n) in this lecture denotes a running time on input of
size n, and thus T (n) > 0 for all integer n > 1.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 3 / 33

https://mitpress.mit.edu/books/introduction-algorithms
https://mitpress.mit.edu/books/introduction-algorithms

The Substitution Method

The substitution method

The substitution method for solving recurrences comprises two steps.

1 Guess the form of the solution.

2 Use mathematical induction to find the constants and show that the
solution works.

Example. We want to solve a recurrence similar to (1):

T (n) = 2T (bn/2c) + n (3)

More precisely, we want to find a good upper bound on T (n).

We first guess that T (n) = O(n log n).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 4 / 33

The Substitution Method

So we want to prove by mathematical induction that T (n) 6 cn log n
for some constant c .

Recall that a proof by induction requires two steps:
I The base step, and
I the inductive step.

We begin with the inductive step.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 5 / 33

Inductive Step

So we assume that n > 1 and T (m) 6 cm logm for all m < n, and
we want to prove that T (n) 6 cn log n.

T (n) = 2T (bn/2c) + n

6 2cbn/2c log(bn/2c) + n

6 2c(n/2) log(n/2) + n

= cn(log(n)− log 2) + n

= cn(log(n)− 1) + n

= cn log n + (1− c)n

So if we choose c > 1, we have T (n) 6 cn log n, which completes the
inductive step.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 6 / 33

Base Step

Base step: We would like to prove that T (n) 6 cn log n for n = 1.

Problem:
I Since log 1 = 0, it means T (1) 6 0.
I T (1) should be positive as it is a running time.

Solution:
I We will use T (2) and T (3) as base cases, because for any n > 3, the

recurrence goes through n = 2 or n = 3 before reaching n = 1.
I We want to have

T (2) 6 2c log 2 = 2c

T (3) 6 3c log 3

1 6 c (from previous slide)

I So we choose

c = max

(
1,

T (2)

2
,
T (3)

3 log 3

)
Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 7 / 33

The Substitution Method

In summary, we have proved the following.

Let c be the constant

c = max

(
1,

T (2)

2
,
T (3)

3 log 3

)
.

Let P(n) be the property T (n) 6 cn log n.

Then we have proved that P(2) and P(3) are true, and the
calculations on Slide 6 show that

P(bn/2c) is true implies P(n) is true. (4)

As P(2) is true, Property (4) implies that P(4) and P(5) are true.

So P(2),P(3),P(4) and P(5) are true, which implies that P(m) is
true for all 2 6 m 6 11.

. . .

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 8 / 33

The Substitution Method

We have proved by induction that for all n > 2,

T (n) 6 cn log n

where the constant c is given by

c = max

(
1,

T (2)

2
,
T (3)

3 log 3

)
.

It means that Equation (3) solves to T (n) = O(n log n).
I Here the n0 from the definition of the O(·) notation is 2.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 9 / 33

The Substitution Method: Example 2

We now want to find an upper bound for

T (n) = T (dn/2e) + T (bn/2c) + 1 (5)

We guess that T (n) = O(n).

So we try to prove that T (n) 6 cn for some constant c.

The inductive step would be:

T (n) = T (dn/2e) + T (bn/2c) + 1

6 c(dn/2e) + c(bn/2c) + 1

= cn + 1

This approach failed.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 10 / 33

The Substitution Method: Example 2

Previous attempt was off by 1 only.

So we make a small change: We try to prove that T (n) 6 cn + d for
some constants c , d .

Inductive step:

T (n) = T (dn/2e) + T (bn/2c) + 1

6 c(dn/2e) + d + c(bn/2c) + d + 1

= cn + 2d + 1

So it works if 2d + 1 6 d , which means d 6 −1.

We choose d = −1.

As we can choose c > 0 freely, we can handle the base cases.

We just proved that T (n) 6 cn − 1 for some constant c > 0, and
thus T (n) = O(n).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 11 / 33

Avoiding Pitfalls

T (n) 6 2cbn/2c+ n

6 cn + n

= O(n) ← wrong!

Problem: In the inductive step, we should prove the exact form of the
inductive hypothesis.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 12 / 33

The Recursion Tree Method

The substitution method often gives short proofs.

Difficulty: guessing the solution.

We can use the recursion tree method to make a good guess.
I We already saw this method in Lecture 2.

So one approach to solve recurrences is:
1 Guess the solution using the recursion tree method.

F We can afford to be sloppy, as the goal is to make a guess.

2 Prove it using the substitution method.
F Needs to be rigorous (see Slide 12).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 13 / 33

The Recursion Tree Method: Example 1

We want to guess a good upper bound for

T (n) = 3T (bn/4c) + Θ(n2) (6)

We can afford to be sloppy. So we assume that n is a power of 4.

It means that we can remove the floor functions.

So we rewrite Equation 6:

T (n) = 3T (n/4) + cn2 for some constant c .

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 14 / 33

The Recursion Tree Method: Example 1

T (n)

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 15 / 33

The Recursion Tree Method: Example 1

cn2

T (n4) T (n4) T (n4)

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 16 / 33

The Recursion Tree Method: Example 1

cn2

c(n4)
2 c(n4)

2 c(n4)
2

T (n
16
) T (n

16
) T (n

16
) T (n

16
) T (n

16
) T (n

16
) T (n

16
) T (n

16
) T (n

16
)

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 17 / 33

The Recursion Tree Method: Example 1

cn2

c(n4)
2 c(n4)

2 c(n4)
2

c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 18 / 33

The Recursion Tree Method: Example 1

cn2

c(n
4)2 c(n

4)2 c(n
4)2

c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2 c(n
16

)2

T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1) T (1)

log4 n

nlog4 3

Θ(nlog4 3)

cn2

3
16cn

2

(3
16)2cn2

Total: O(n2)

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 19 / 33

The Recursion Tree Method: Example 1

Let h denote the height of the tree.

The size of the subproblems decreases by a factor 4 at each level.

So 4h = n, which means that h = log4 n.

So the number of leaves is

3h = 3log4 n = 3
log3 n
log3 4 = 3(log3 n)(log4 3) = nlog4 3 ' n0.792

At depth i < h:
I The number of nodes is 3i .
I The size of each subproblem is n/4i .
I The total cost over all nodes at depth i is

3ic(n/4i)2 = c

(
3

16

)i

n2.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 20 / 33

The Recursion Tree Method: Example 1

At the leaves, the total cost is Θ(nlog4 3) as there are nlog4 3 leaves
and each leaf has cost Θ(1).

Overall

T (n) = O(nlog4 3) + cn2
h−1∑
i=0

(
3

16

)i

6 O(nlog4 3) + cn2
∞∑
i=0

(
3

16

)i

= O(nlog4 3) + cn2
16

13
= O(n2)

so T (n) = O(n2).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 21 / 33

The Recursion Tree Method: Example 1

We have just guessed that Equation (6) yields T (n) = O(n2).

We now prove it with the substitution method.

We rewrite Equation (6) using an unknown constant c :

T (n) 6 3T (bn/4c) + cn2.

Now we prove by induction that T (n) 6 dn2 for some constant d .

T (n) 6 3T (bn/4c) + cn2

6 3dbn/4c2 + cn2

6 3d(n/4)2 + cn2

=

(
3

16
d + c

)
n2

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 22 / 33

The Recursion Tree Method: Example 1

So if we choose d > 16c/13, we have proved that
T (n) 6 dn2 = O(n2).

We also have T (n) = Ω(n2). Why?
I It follows directly from Equation (6) that T (n) > Θ(n2).

So we proved the tight bound T (n) = Θ(n2).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 23 / 33

The Recursion Tree Method: Example 2

Problem

Find a good upper bound for T (n) = T (n/3) + T (2n/3) + O(n).

(See textbook p. 91)

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 24 / 33

The Master Method

Theorem (Master Theorem)

Let a > 1 and b > 1 be constants, let f (n) be a function, and let
T (n) > 0 be defined on the nonnegative integers by the recurrence

T (n) = aT (n/b) + f (n)

where we interpret n/b to mean either bn/bc or dn/be. Then T (n) has
the following asymptotic bounds:

1 If f (n) = O(nlogb a−ε) for some constant ε > 0, then
T (n) = Θ(nlogb a).

2 If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

3 If f (n) = Ω(nlogb a+ε) for some constant ε > 0, and if
af (n/b) 6 cf (n) for some constant c < 1 and all sufficiently large n,
then T (n) = Θ(f (n)).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 25 / 33

The Master Method

I will not prove the master theorem in CSE331.

But here is some intuition.

Case 2: f (n) = Θ(nlogb a).
I A simple calculation shows that for each level of the recursion tree, the

cost is Θ(nlogb a).
I As b > 1, the height of the recursion tree is Θ(log n).
I So the running time is T (n) = Θ(nlogb a log n).

Case 1: f (n) is much smaller than nlogb a.
I As there are nlogb a leaves, the cost of the leaves is Θ(nlogb a).
I So the leaves dominate the running time, and T (n) = Θ(nlogb a).

Case 3: f (n) is much larger than nlogb a.
I In this case the cost is dominated by the root node of the tree.
I So T (n) = Θ(f (n)).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 26 / 33

The Master Method: Example 1

The running time of binary search is given by:

T (n) = T (bn/2c) + 1

So a = 1, b = 2 and f (n) = 1.

nlogb a = n0 = 1.

As f (n) = 1 = Θ(nlogb a), we are in case 2, and thus

T (n) = Θ(nlogb a log n) = Θ(log n).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 27 / 33

The Master Method: Example 2

The running time of merge sort is given by:

T (n) = T (bn/2c) + T (dn/2e) + Θ(n).

The floor and ceiling function can be discarded when we apply the
master theorem, so we rewrite it:

T (n) = 2T (n/2) + Θ(n).

Thus a = 2, b = 2 and f (n) = Θ(n).

nlogb a = n.

We are in case 2, and thus

T (n) = Θ(nlogb a log n) = Θ(n log n).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 28 / 33

The Master Method: Example 3

T (n) = 9T (n/3) + n

We have a = 9, b = 3 and f (n) = n.

So nlogb a = nlog3 9 = n2.

Therefore f (n) = n = O(nlogb a−ε) for ε = 1.

We are in Case 1 of the master theorem, and thus f (n) = Θ(n2).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 29 / 33

The Master Method: Example 4

Consider the recurrence relation T (n) = T (2n/3) + 1

a = 1, b = 3/2 and f (n) = 1.

nlogb a = n0 = 1.

We are in Case 2, and

T (n) = Θ(log n).

What is the connection with binary search?

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 30 / 33

The Master Method: Example 5

Consider the recurrence relation T (n) = 3T (n/4) + n log n

a = 3, b = 4 and f (n) = n log n.

nlogb a ' n0.8.

f (n) = Ω(nlogb a), so we are in Case 3, and

T (n) = Θ(n log n).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 31 / 33

The Master Method: Example 6

Consider the recurrence relation T (n) = 2T (n/2) + n log n

a = 2, b = 2 and f (n) = n log n.

nlogb a = n.

None of the three cases applies, because we don’t have
n log n = Ω(n1+ε) for any ε > 0.

I Reason: log n grows more slowly than nε for every ε > 0.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 32 / 33

The Master Method

The master theorem provides a general method for solving
recurrences.

The three cases of the master theorem do not cover all possibilities.
I (See previous slide.)

You do not need to memorize the master theorem statement. I will
give it in the exam.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 33 / 33

	Introduction
	The substitution method
	The recursion tree method
	The master method

