CSE331 Introduction to Algorithm
Lecture 4: Solving Recurrences

Antoine Vigneron
antoine@Qunist.ac.kr

Ulsan National Institute of Science and Technology

July 11, 2017

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 1/33

© Introduction

© The substitution method

© The recursion tree method

@ The master method

Antoine Vigneron (UNIST) CSE331 Lecture 4

Introduction

@ Reference: Sections 4.3, 4.4 and 4.5 of the textbook Introduction to
Algorithms by Cormen, Leiserson, Rivest and Stein.

@ In Lecture 3, the running times were given by recurrence relations.

Merge Sort: T(n) =T([n/2])+ T(|n/2]) + ©(n) (1)
Binary Search: T(n) =T(|n/2])+©(1) (2)

@ |t is often going to be the case.

» Many algorithms are recursive.
> In particular, divide and conquer algorithms.

@ In this Lecture, we will see how to solves some recurrence relations
that often arise when analyzing algorithms.

@ The function T(n) in this lecture denotes a running time on input of
size n, and thus T(n) > 0 for all integer n > 1.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 3/33

https://mitpress.mit.edu/books/introduction-algorithms
https://mitpress.mit.edu/books/introduction-algorithms

The Substitution Method

The substitution method
The substitution method for solving recurrences comprises two steps.
@ Guess the form of the solution.

@ Use mathematical induction to find the constants and show that the
solution works.

e Example. We want to solve a recurrence similar to (1):

T(n)=2T(|n/2])+n (3)

@ More precisely, we want to find a good upper bound on T(n).
o We first guess that T(n) = O(nlogn).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 4 /33

The Substitution Method

@ So we want to prove by mathematical induction that T(n) < cnlogn
for some constant c.

@ Recall that a proof by induction requires two steps:

» The base step, and
» the inductive step.

@ We begin with the inductive step.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 5/33

Inductive Step

@ So we assume that n > 1 and T(m) < cmlog m for all m < n, and
we want to prove that T(n) < cnlogn.

T(n)=2T(|n/2])+n
< 2¢n/2] log(|n/2)) +
< 2¢(n/2)log(n/2) + n
= cn(log(n) — log?2) + n
= cn(log(n) —1)+n
=cnlogn+(1—c¢)n

@ So if we choose ¢ > 1, we have T(n) < cnlog n, which completes the
inductive step.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 6 /33

Base Step

o Base step: We would like to prove that T(n) < cnlogn for n = 1.
@ Problem:

» Since log1 =0, it means T(1) < 0.

» T(1) should be positive as it is a running time.
@ Solution:

» We will use T(2) and T(3) as base cases, because for any n > 3, the
recurrence goes through n =2 or n = 3 before reaching n = 1.
» We want to have

(2) < 2clog2 =2c¢
(3) < 3clog3
1< ¢ (from previous slide)

T
T

» So we choose

e me (1’ @ 3T|<EZ)3>

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 7 /33

The Substitution Method

@ In summary, we have proved the following.

@ Let ¢ be the constant

(11, 72)).

@ Let P(n) be the property T(n) < cnlogn.
@ Then we have proved that P(2) and P(3) are true, and the
calculations on Slide 6 show that

P(|n/2]) is true implies P(n) is true. (4)

e As P(2) is true, Property (4) implies that P(4) and P(5) are true.
e So P(2),P(3), P(4) and P(5) are true, which implies that P(m) is
true for all 2 < m < 11

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 8 /33

The Substitution Method

@ We have proved by induction that for all n > 2,
T(n) < cnlogn

where the constant c is given by

 — max (17 (2 T(3)) '

2 ’3log3

@ It means that Equation (3) solves to T(n) = O(nlogn).
» Here the ny from the definition of the O(-) notation is 2.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 9 /33

The Substitution Method: Example 2
@ We now want to find an upper bound for

T(n) = T([n/2]) + T(ln/2]) +1

e We guess that T(n) = O(n).
@ So we try to prove that T(n) < cn for some constant c.
@ The inductive step would be:
T(n) = T([n/2]) + T(ln/2]) +1
<c([n/2])+c(ln/2])+1
=cn+1

@ This approach failed.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017

10 / 33

The Substitution Method: Example 2

@ Previous attempt was off by 1 only.

@ So we make a small change: We try to prove that T(n) < cn+ d for
some constants ¢, d.

@ Inductive step:

T(n)=T([n/2])+ T([n/2]) +1
<c([n/2])+d+c(|n/2])+d+1
=cn+2d+1

@ So it works if 2d + 1 < d, which means d < —1.

@ We choose d = —1.

@ As we can choose ¢ > 0 freely, we can handle the base cases.

@ We just proved that T(n) < cn — 1 for some constant ¢ > 0, and
thus T(n) = O(n).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 11 /33

Avoiding Pitfalls

2c|n/2] +

cn—+n

T(n)

<
<

O(n) — wrong!

@ Problem: In the inductive step, we should prove the exact form of the
inductive hypothesis.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 12 /33

The Recursion Tree Method

@ The substitution method often gives short proofs.

o Difficulty: guessing the solution.
@ We can use the recursion tree method to make a good guess.
» We already saw this method in Lecture 2.
@ So one approach to solve recurrences is:
@ Guess the solution using the recursion tree method.
* We can afford to be sloppy, as the goal is to make a guess.
© Prove it using the substitution method.
* Needs to be rigorous (see Slide 12).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 13 /33

The Recursion Tree Method: Example 1

@ We want to guess a good upper bound for
T(n) =3T([n/4]) +©(n*) (6)

@ We can afford to be sloppy. So we assume that n is a power of 4.
@ It means that we can remove the floor functions.

@ So we rewrite Equation 6:

T(n) =3T(n/4) + cn® for some constant c.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 14 / 33

The Recursion Tree Method: Example 1

T(n)

Antoine Vigneron (UNIST) CSE331 Lecture 4

The Recursion Tree Method: Example 1

Antoine Vigneron (UNIST) CSE331 Lecture 4

The Recursion Tree Method: Example 1

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 17 / 33

The Recursion Tree Method: Example 1

Q
—~~
w3
~—
(™)
—~~
B3
~—
[

o
—~
I3
~—
V]

/
\ .

\./
N

A
|3

<
V)

2
k—
[\

JOR
|s

<
N

A
|3

<
V)

Q

\

2
- =gk
2
V)
SN

__ 5k
=&
nN
A
-2k
—
- — — O

— —
[}

T(1) T() T() TO) T() T() TO) T() T() T() T() T()

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 18 / 33

The Recursion Tree Method: Example 1

cn? » cn?
10g4n / \
o(2)? (2)? (B e den?

/
\ .

\./
N

PO
|3

<
V)

2
k—
n

JOR
|s

<
N

PO
|3

<
V)

o

\

2
-5k
A
V)
SN
__ 5k
=&
[\
A
- 23k
—
- — — O

I)

— =
[}

| | | | | | | | | | | |
T(1) T() T() T T() T() T) T(1) T() T() T() T(1) . (n1o84)

n10g4 3

Total: O(n?)

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 19 / 33

The Recursion Tree Method: Example 1

@ Let h denote the height of the tree.
@ The size of the subproblems decreases by a factor 4 at each level.
@ So 4" = n, which means that h = log, n.

@ So the number of leaves is

logz n
3h _ 3Iog4 N _ 3logzd — 3(Iog3 n)(log, 3) _ nlog43 ~ 0792

o At depth i < h:

» The number of nodes is 3'.
» The size of each subproblem is n/4'.
» The total cost over all nodes at depth i is

3'c(n/4')? = ¢ (1—6>in2.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 20/ 33

The Recursion Tree Method: Example 1

o At the leaves, the total cost is ©(n'843) as there are n'°8:3 |eaves
and each leaf has cost ©(1).

@ Overall

so T(n) = O(n?).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 21 /33

The Recursion Tree Method: Example 1

o We have just guessed that Equation (6) yields T(n) = O(n?).
@ We now prove it with the substitution method.

@ We rewrite Equation (6) using an unknown constant c:

T(n) <3T(|n/4]) + cn®.

o Now we prove by induction that T(n) < dn? for some constant d.

3T(|[n/4)) + cn?

T(n) <
< 3d|n/4)? + cn?
<

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 22 /33

The Recursion Tree Method: Example 1

@ So if we choose d > 16¢/13, we have proved that
T(n) < dn? = O(n?).
e We also have T(n) = Q(n?). Why?
» It follows directly from Equation (6) that T(n) > ©(n?).
@ So we proved the tight bound T(n) = ©(n?).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 23 /33

The Recursion Tree Method: Example 2

Problem
Find a good upper bound for T(n) = T(n/3)+ T(2n/3) + O(n).

(See textbook p. 91)

Antoine Vigneron (UNIST) CSE331 Lecture 4

The Master Method

Theorem (Master Theorem)

Let a>1 and b > 1 be constants, let f(n) be a function, and let
T(n) > 0 be defined on the nonnegative integers by the recurrence

T(n)=aT(n/b) + f(n)
where we interpret n/b to mean either |n/b| or [n/b]. Then T(n) has

the following asymptotic bounds:

Q If f(n) = O(n'°82=%) for some constant & > 0, then
T(n) = ©(n'oe2),

Q Iff(n) = ©(n'°8:3), then T(n) = ©(n'°8>?log n).

© If f(n) = Q(n'°82%¢) for some constant & > 0, and if

af(n/b) < cf(n) for some constant ¢ < 1 and all sufficiently large n,
then T(n) = ©(f(n)).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 25 /33

The Master Method

@ | will not prove the master theorem in CSE331.

@ But here is some intuition.
e Case 2: f(n) = ©(n'°8> 7).
> A simple calculation shows that for each level of the recursion tree, the
cost is ©(n'°8?).
» As b > 1, the height of the recursion tree is ©(log n).
» So the running time is T(n) = ©(n'°:2 log n).
e Case 1: f(n) is much smaller than n'°8s2,
> As there are n'°8:2 |eaves, the cost of the leaves is ©(n'°8s).
» So the leaves dominate the running time, and T(n) = ©(n'°8?).
e Case 3: f(n) is much larger than n'°8s2,
> In this case the cost is dominated by the root node of the tree.

» So T(n) = ©(f(n)).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 26 / 33

The Master Method: Example 1

@ The running time of binary search is given by:
T(n)=T(|n/2])+1

@ Soa=1 b=2and f(n) =1
o n'8ra =0 =1,

o As f(n) =1 =0O(n'°%7), we are in case 2, and thus

T(n) = ©(n'°&s?log n) = O(log n).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 27 / 33

The Master Method: Example 2

@ The running time of merge sort is given by:

T(n) = T([n/2]) + T([n/2]) + ©(n).

@ The floor and ceiling function can be discarded when we apply the
master theorem, so we rewrite it:

T(n) =2T(n/2) + ©(n).

e Thus a=2, b=2and f(n) = ©(n).
° n'8v3 = p.

@ We are in case 2, and thus
T(n) = ©(n'°8>log n) = O(nlog n).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 28 /33

The Master Method: Example 3

T(n)=9T(n/3)+n

@ We have a=9, b=3and f(n) = n.
o So n'°8s2 = plogs? — p2,
o Therefore f(n) = n = O(n'°837¢) for ¢ = 1.

o We are in Case 1 of the master theorem, and thus f(n) = ©(n?).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 29 /33

The Master Method: Example 4

o Consider the recurrence relation T(n) = T(2n/3) +1
ea=1 b=3/2and f(n) =1.
o n°82 = n0 =1

@ We are in Case 2, and

T(n) = O(log n).

@ What is the connection with binary search?

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 30/ 33

The Master Method: Example 5

Consider the recurrence relation T(n) =3T(n/4) 4 nlogn
a=3, b=4and f(n) = nlogn.
n'ogra ~ 0.8

f(n) = Q(n'°8+2), so we are in Case 3, and

T(n) = ©(nlogn).

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017

31/33

The Master Method: Example 6

e Consider the recurrence relation T(n) =2T(n/2) + nlogn
@ a=2,b=2and f(n) = nlogn.
o n'°gra = p.
@ None of the three cases applies, because we don't have
nlog n = Q(n'*¢) for any £ > 0.
> Reason: log n grows more slowly than n® for every € > 0.
Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017

32/ 33

The Master Method

@ The master theorem provides a general method for solving
recurrences.

@ The three cases of the master theorem do not cover all possibilities.
> (See previous slide.)

@ You do not need to memorize the master theorem statement. | will
give it in the exam.

Antoine Vigneron (UNIST) CSE331 Lecture 4 July 11, 2017 33 /33

	Introduction
	The substitution method
	The recursion tree method
	The master method

