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Introduction

Problem (Sorting)

Given an input sequence of n numbers, the sorting problem is to find a
permutation of the input sequence sorted in nondecreasing order.

The sorting problem can also be stated as follows:
I Input: a sequence of n numbers (a1, a2, . . . , an)
I Output: a permutation of the input sequence (a′1, a

′
2, . . . , a

′
n) such

that a′1 6 a′2 6 . . . 6 a′n
Example:

I Input: (6, 1, 7, 6, 4)
I Output: (1, 4, 6, 6, 7)

The numbers ai that we wish to sort are also called the keys.
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Introduction

In this lecture, we present a first sorting algorithm.
I Reference: Chapter 2 of the textbook Introduction to Algorithms by

Cormen, Leiserson, Rivest and Stein.

The main goal is to introduce the framework of this course.

Sorting is an important problem.
I In the 60’s, 25% of computing time was spent on sorting.
I It allows to illustrate several algorithmic techniques.

There will be more lectures on sorting later this semester.
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Algorithm
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Algorithm
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Algorithm
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Algorithm

Insertion Sort proceeds from left to right. The current element A[j ]
(red) is inserted into A[1 . . . j − 1].

A[j ] is compared with all the blue keys.

Insertion sort is a very natural algorithm.
I People use it to sort a deck of cards.
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Algorithm

Pseudocode of insertion sort:

Insertion Sort

1: procedure Insertion-Sort(A[1 . . . n])
2: for j ← 2, n do
3: key← A[j ]
4: i ← j − 1
5: while i > 0 and A[i ] > key do
6: A[i + 1]← A[i ]
7: i ← i − 1

8: A[i + 1]← key

We will present algorithms in pseudocode in this course.
I Sometimes resembles C, Java, Python. . .
I Sometimes uses plain English.
I No strict rule.
I Should be clear and concise.
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Proof of Correctness

We now want to prove that insertion sort outputs a correct result.
I i.e. at the end of the execution, A is sorted.

Strategy: We use a loop invariant.

Loop invariant for Insertion Sort

At the start of each iteration of the for loop, the subarray A[1 . . . j − 1]
consists of the elements originally in A[1 . . . j − 1] in sorted order.

We want to prove 3 properties about the loop invariant:
I Initialization. It is true prior to the first iteration of the loop.
I Maintenance. If it is true before an iteration of the loop, it remains

true before the next iteration.
I Termination. When the loop terminates, the invariant gives us a

useful property that helps show that the algorithm is correct.

Remark: this is a proof by induction.

Proofs done in class. See textbook page 19.
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Analysis

Analyzing an algorithm means predicting the amount of resources it
uses.

I Usually: estimate the running time, i.e. the time needed for the
algorithm to complete.

I It requires a model of computation.

Our model of computation: The Random Access Machine (RAM).

RAM can perform in constant time simple instructions such as:
I Arithmetic operations +,−,×, /, remainder, floor, ceiling
I Branching instructions (IF THEN ELSE,)
I Copying a single variable (not a whole array)
I Accessing an element of an array

The input size n is the number of bits, or the number of words
needed to encode the problem. We will specify it for each problem.

I Here n is the size of the input array A[1 . . . n].

Data types:
I Word size c log n for an input of size n, where c is a constant.
I For instance, c log n-bit integers.
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Analysis

Insertion Sort

1: procedure Insertion-Sort(A[1 . . . n])
2: for j ← 2, n do
3: key← A[j ]
4: i ← j − 1
5: while i > 0 and A[i ] > key do
6: A[i + 1]← A[i ]
7: i ← i − 1

8: A[i + 1]← key

line cost times
2 c2 n
3 c3 n − 1
4 c4 n − 1
5 c5

∑n
j=2 tj

6 c6
∑n

j=2 tj − 1

7 c7
∑n

j=2 tj − 1

8 c8 n − 1

tj : # of times the while loop test is performed

ck , k = 2 . . . 8 is the time taken to execute line k once
I Unknown constant, depends on hardware and compiler
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Analysis

So the running time is

T (n) = c2n + c3(n − 1) + c4(n − 1) + c5

n∑
j=2

tj

+ c6

n∑
j=2

(tj − 1) + c7

n∑
j=2

(tj − 1) + c8(n − 1).
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Analysis

If the input is already sorted, then tj = 1 for all j .

So the running time on sorted input is

T (n) = (c2 + c3 + c4 + c5 + c8)n − (c3 + c4 + c5 + c8)

T (n) cannot be smaller for any input of size n, as we have tj = 1 for
all j .

It is the best-case running time.

As T (n) = an + b for two constants a, b, we say that it is a linear
function.
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Analysis

Suppose that the input A is sorted in decreasing order:
A[1] > A[2] > · · · > A[n].

Then tj = j for all j .

As
n∑

j=2

j =
n(n + 1)

2
− 1 and

n∑
j=2

j − 1 =
n(n − 1)

2
, we get:

T (n) =

(
c5 + c6 + c7

2

)
n2 +

(
c2 + c3 + c4 +

c5
2
− c6

2
− c7

2
+ c8

)
n

− (c2 + c4 + c5 + c8).

As tj cannot be larger, this is the worst-case running time.

Since T (n) can be written an2 + bn + c for some constants a, b, c , we
say that it is a quadratic function.
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Analysis

We usually perform a worst-case analysis rather than best case.

Reasons:
I It gives a guarantee on the running time.
I It often happens in practice.
I The average case is often roughly as bad.

F Example: Apply Insertion Sort to a set of random numbers.
F Then tj is about j/2 on average.
F So the average running time is still quadratic.

When the running time is linear, we will write T (n) = Θ(n), and
when it is quadratic, we will write T (n) = Θ(n2).

I We will study this in details in two weeks.
I Intuition: Keep the dominant term, remove constant factors.
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